AC and AG dinucleotide repeats in the PAX6 P1 promoter are associated with high myopia
نویسندگان
چکیده
PURPOSE The PAX6 gene, located at the reported myopia locus MYP7 on chromosome 11p13, was postulated to be associated with myopia development. This study investigated the association of PAX6 with high myopia in 379 high myopia patients and 349 controls. METHODS High myopia patients had refractive errors of -6.00 diopters or greater and axial length longer than 26 mm. Control subjects had refractive errors less than -1.00 diopter and axial length shorter than 24 mm. The P1 promoter, all coding sequences, and adjacent splice-site regions of the PAX6 gene were screened in all study subjects by polymerase chain reaction and direct sequencing. PAX6 P1 promoter-luciferase constructs with variable AC and AG repeat lengths were prepared and transfected into human ARPE-19 cells prior to assaying for their transcriptional activities. RESULTS No sequence alterations in the coding or splicing regions showed an association with high myopia. Two dinucleotide repeats, (AC)(m) and (AG)(n), in the P1 promoter region were found to be highly polymorphic and significantly associated with high myopia. Higher repeat numbers were observed in high myopia patients for both (AC)(m) (empirical p = 0.013) and (AG)(n) (empirical p = 0.012) dinucleotide polymorphisms, with a 1.327-fold increased risk associated with the (AG)(n) repeat (empirical p = 0.016; 95% confidence interval: 1.059-1.663). Luciferase-reporter analysis showed elevated transcription activity with increasing individual (AC)(m) and (AG)(n) and combined (AC)(m)(AG)(n) repeat lengths. CONCLUSIONS Our results revealed an association between high myopia and AC and AG dinucleotide repeat lengths in the PAX6 P1 promoter, indicating the involvement of PAX6 in the pathogenesis of high myopia.
منابع مشابه
Evolutionary Footprints of Short Tandem Repeats in Avian Promoters
Short tandem repeats (STRs) or microsatellites are well-known sequence elements that may change the spacing between transcription factor binding sites (TFBSs) in promoter regions by expansion or contraction of repetitive units. Some of these mutations have the potential to contribute to phenotypic diversity by altering patterns of gene expression. To explore how repetitive sequence motifs withi...
متن کاملP-70: Study of GTn-Repeat Expansion in Heme Oxygenase-1 Gene Promoter As Genetic Cause of Male Infertility
Background: The length of GT-repeats polymorphic region in the promoter of human Heme oxygenase-1 gene (HO-1) alters the level of its transcriptional activity in response to oxidative stresses. Decreased level of HO-1 protein in the seminal plasma has been reported to be associated with oligospermia and azoospermia in male infertility. This is the first study to investigate the association betw...
متن کاملSurvey of microsatellite DNA in pine.
A large insert genomic library from eastern white pine (Pinus strobus) was probed for the microsatellite motifs (AC)n and (AG)n, all 10 trinucleotide motifs, and 22 of the 33 possible tetranucleotide motifs. For comparison with a species from a different subgenus, a loblolly pine (Pinus taeda) genomic library was also probed with the same set of di- and tri-nucleotide repeats and 11 of the tetr...
متن کاملP-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملDiscrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes.
To address whether there are differences of variation among repeat motif types and among taxonomic groups, we present here an analysis of variation and correlation of dinucleotide microsatellite repeats in eukaryotic genomes. Ten taxonomic groups were compared, those being primates, mammalia (excluding primates and rodentia), rodentia, birds, fish, amphibians and reptiles, insects, molluscs, pl...
متن کامل